Abstract
Psoriasis is an inflammatory immune-mediated skin disease that affects nearly 2–3 % of the global population. The current study aimed to develop safe and efficient anti-psoriatic nanoformulations from Artemisia monosperma essential oil (EO). EO was extracted using hydrodistillation (HD), microwave-assisted hydrodistillation (MAHD), and head-space solid-phase microextraction (HS–SPME), as well as GC/ MS was used for its analysis. EO nanoemulsion (NE) was prepared using the phase inversion method, while the biodegradable polymeric film (BF) was prepared using the solvent casting technique. A.monosperma EO contains a high percentage of non-oxygenated compounds, being 90.45 (HD), 82.62 (MADH), and 95.17 (HS–SPME). Acenaphthene represents the major aromatic hydrocarbon in HD (39.14 %) and MADH (48.60 %), while sabinene as monoterpene hydrocarbon (44.2 %) is the primary compound in the case of HS–SPME. The anti-psoriatic Effect of NE and BF on the successful delivery of A.monosperma EO was studied using the imiquimod (IMQ)-induced psoriatic model in mice. Five groups (n = 6 mice) were classified into control group, IMQ group, IMQ+standard group, IMQ+NE group, and IMQ+BF group. NE and BF significantly alleviated the psoriatic skin lesions and decreased the psoriasis area severity index, Baker’s score, and spleen index. Also, they reduced the expression of Ki67 and attenuated the levels of tumor necrosis factor-alpha, interleukin 6, and interleukin 17. Additionally, NE and NF were able to downregulate the NF-κB and GSK-3β signaling pathways. Despite the healing properties of BF, NE showed a more prominent effect on treating the psoriatic model, which could be referred to as its high skin penetration ability and absorption. These results potentially contribute to documenting experimental and theoretical evidence for the clinical uses of A.monosperma EO nanoformulations for treating psoriasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.