Abstract

Arsenic is methylated by arsenite (As(III)) S-adenosylmethionine (SAM) methyltransferases (ArsMs). ArsM crystal structures show three domains (an N-terminal SAM binding domain (A domain), a central arsenic binding domain (B domain), and a C-terminal domain of unknown function (C domain)). In this study, we performed a comparative analysis of ArsMs and found a broad diversity in structural domains. The differences in the ArsM structure enable ArsMs to have a range of methylation efficiencies and substrate selectivities. Many small ArsMs with 240-300 amino acid residues have only A and B domains, represented by RpArsM from Rhodopseudomonas palustris. These small ArsMs have higher methylation activity than larger ArsMs with 320-400 residues such as Chlamydomonas reinhardtii CrArsM, which has A, B, and C domains. To examine the role of the C domain, the last 102 residues in CrArsM were deleted. This CrArsM truncation exhibited higher As(III) methylation activity than the wild-type enzyme, suggesting that the C-terminal domain has a role in modulating the rate of catalysis. In addition, the relationship of arsenite efflux systems and methylation was examined. Lower rates of efflux led to higher rates of methylation. Thus, the rate of methylation can be modulated in multiple ways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.