Abstract

Arsenic in flue gas from municipal solid waste incineration can damage to human health and ecological environment. A sulfate-nitrate-reducing bioreactor (SNRBR) for flue gas arsenic removal was investigated. Arsenic removal efficiency attained 89.4%. An integrated metagenomic and metaproteomic investigation showed that three nitrate reductases (NapA, NapB and NarG), three sulfate reductases (Sat, AprAB and DsrAB), and arsenite oxidase (ArxA) regulated nitrate reduction, sulfate reduction and bacterial As(III)-oxidation, respectively. Citrobacter and Desulfobulbus could synthetically regulate the expression of arsenite-oxidizing gene, nitrate reductases and sulfate reducatases, which involved in As(III) oxidation, nitrate and sulfate reduction. A bacterial consortium containing Citrobacter, UG_Enterobacteriaceas, Desulfobulbus and Desulfovibrio could capable of simultaneously arsenic oxidation, sulfate reduction and denitrification. Anaerobic denitrification and sulfate reduction were cocoupled to arsenic oxidation. The biofilm was characterized by FTIR, XPS, XRD, EEM, and SEM. XRD and XPS spectra verified the formation of aarsenic species (As(V)) from flue gas As(III) conversion. Arsenic speciation in biofilms of SNRBR consisted of 77% residual arsenic, 15.9% organic matter-bound arsenic, and 4.3% strongly absorbed arsenic. Flue gas arsenic was bio-stabilized in the form of Fe–As–S and As-EPS through biodeposition, biosorption and biocomplexation. This provides a new way of flue gas arsenic removal using the sulfate-nitrate-reducing bioreactor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call