Abstract

Hundreds of millions of people are at risk from drinking arsenic (As)-contaminated groundwater in the world, making As removal from aquatic systems of utmost importance. However, characteristics of As removal by bacteria-induced ferrihydrite and coupled with redox processes are still not clear. Two-line ferrihydrite was formed in the presence of aerobic Fe(II)-oxidizing bacterium, Pseudomonas sp. strain GE-1. Arsenic co-precipitation with and adsorption onto ferrihydrite induced by Pseudomonas sp. strain GE-1 and redox processes of As were investigated. Results demonstrated that co-precipitation performed better in As(V) removal than As(III) removal, while adsorption showed higher capacity for As(III) removal. X-ray absorption near-edge spectroscopy (XANES) indicated that As(III) oxidation occurred in solid phases during co-precipitation and adsorption. Detection of As species in solution showed that As(V) was reduced to As(III) during co-precipitation, although no As(V) reduction occurred during adsorption. Arsenic immobilization by Pseudomonas sp. strain GE-1-induced ferrihydrite in the presence of the strains may be applied as an alternative remediation strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.