Abstract
A long-lasting challenge in eliminating the worldwide impact of geogenic arsenic (As)-contaminated groundwater is the development of efficient, in-situ treatment technologies that are applicable in decentralized and rural areas. Here we present a managed aquifer rehabilitation (MAR) approach based on the in-situ creation of Fe-oxide scavengers for remediating As-contaminated groundwater. The Fe-oxide coatings on sediment surfaces were generated via periodic injection of Fe2+ and ClO− solutions into an As-affected sandy aquifer at the Datong Basin, northern China for 25 days. This treatment prompted the buildup of weakly alkaline/circumneutral and oxidizing conditions to enhance As(III) oxidation in the target aquifer. Dissolved As concentrations decreased from the initial average 78.0 to 9.8 μg/L over the 25-d amendment. Sediment imaging by scanning electron microscope-X-ray energy dispersive spectroscopy confirms the deposition of Fe-rich precipitates on sediment surfaces with the simultaneous retention of As, and high density electrical tomography suggests the occurrence of such a process throughout the target zone. Further X-ray diffraction analysis and sequential chemical extraction reveal that the neo-formed Fe minerals comprised both poorly crystalline (e.g., ferrihydrite) and better crystalline (e.g., goethite) Fe oxides. The process-based reactive-transport modeling for the variations of As species in the treated groundwater supports that the new Fe-oxide minerals, most probably goethite, acted as efficient removers of aqueous As. The low As level of ∼10 μg/L was maintained during the following 215-d monitoring, demonstrating the long effectiveness of the MAR approach. This study highlights the feasibility of As immobilization by manipulating in-situ Fe-oxide coating on sandy sediments at the pilot scale. The MAR technology may be applicable for As-affected aquifers with controlled oxidizing conditions in the Datong Basin and likely other high-As regions with similar hydrogeochemical settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.