Abstract

Organo-arsenical compounds are considered non-carcinogenic, and hence, are still allowed by the regulatory agencies for use in agriculture as pesticides. Due to rapid encroachment of suburban areas into former agricultural lands, the potential for human exposure to soil-arsenic has increased tremendously in recent years. However, insufficient data is available on the stability of organo-arsenicals in soils; as to whether they remain in an organic form, or are converted over time to potentially carcinogenic inorganic forms. A static incubation study was conducted to estimate soil speciation and in-vitro bioavailability (i.e., bioaccessibility) of arsenic as a function of soil properties. Two chemically variant soil types were chosen, based on their potential differences with respect to arsenic reactivity: an acid sand with minimal arsenic retention capacity and an alkaline clay loam with relatively high concentrations of Fe/Al and Ca/Mg. The soils were amended with dimethylarsenic acid (DMA) at three rates, 45, 225 and 450 mg/kg, and incubated for 1 year. A sequential extraction scheme was employed to identify the geochemical forms of arsenic in soils, which were correlated with the in-vitro bioavailable fractions of arsenic. Human health risk calculated in terms of excess cancer risk (ECR) showed that risk assessment based on bioaccessible arsenic concentrations instead of the traditional total soil arsenic is a more realistic approach. Results showed that soil properties (such as pH, Fe/Al content and soil texture) of the two soils dictated the geochemical speciation, and hence, bioaccessibility of arsenic from DMA, indicating that the use of organic arsenicals as pesticides in mineral soils may not be a safe practice from a human health risk perspective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call