Abstract
In one-dimensional environments with single-peaked preferences we consider social welfare functions satisfying Arrow's requirements, i.e. weak Pareto and independence of irrelevant alternatives. When the policy space is a one-dimensional continuum such a welfare function is determined by a collection of 2 N strictly quasi-concave preferences and a tie-breaking rule. As a corollary we obtain that when the number of voters is odd, simple majority voting is transitive if and only if each voter's preference is strictly quasi-concave.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have