Abstract

This study on future ultrahigh density magnetic recording devices aims to develop a technique for arranging FePt nanocubes on a substrate by using organosilane as an interlayer. An array of FePt nanocubes was formed by chemical synthesis, utilizing the Pt–S binding between the SH functional group in (3-mercaptopropyl)trimethoxysilane and Pt in the FePt nanocubes. The morphology of the FePt nanocube array on the substrate was characterized using atomic force microscopy and plan-view scanning electron microscopy, which revealed that the array was a monolayer. After was coated by chemical vapor deposition as a protective layer for sintering prevention, annealing was carried out at for 3 h in a reducing atmosphere to transform the crystal structure of the FePt nanocubes to the phase. X-ray diffraction results revealed that the annealed FePt nanocube array had a FePt(110) orientation and phases such as (001) and (110). The Pt–S binding did not obstruct the ordering of FePt. Consequently, a method for arranging nanoparticles by using the organic molecules with functional groups that can interact with nanoparticle selectivity as an interlayer can be applied as a formation technique for arranging a wide range of nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.