Abstract
Let L ∈ K ( z ) [ ∂ ] be a linear differential operator, where K is an effective algebraically closed subfield of C . It can be shown that the differential Galois group of L is generated (as a closed algebraic group) by a finite number of monodromy matrices, Stokes matrices and matrices in local exponential groups. Moreover, there exist fast algorithms for the approximation of the entries of these matrices. In this paper, we present a numeric–symbolic algorithm for the computation of the closed algebraic subgroup generated by a finite number of invertible matrices. Using the above results, this yields an algorithm for the computation of differential Galois groups, when computing with a sufficient precision. Even though there is no straightforward way to find a “sufficient precision” for guaranteeing the correctness of the end result, it is often possible to check a posteriori whether the end result is correct. In particular, we present a non-heuristic algorithm for the factorization of linear differential operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.