Abstract

The electrochemical and photophysical properties of a heteroleptic Cu(I) complex bearing an aliphatic α-diimine ligand, [Cu(dab)(xantphos)]+ (Cu-dab; dab = N,N'-diphenyl-2,3-dimethyl-1,4-diazabutadiene, xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene), were evaluated together with those of complexes [Cu(dmp)(xantphos)]+ (Cu-dmp; dmp = 2,9-dimethyl-1,10-phenanthroline), [Cu(dmbpy)(xantphos)]+ (Cu-dmbpy; dmbpy = 5,5'-dimethyl-2,2'-bipyridine), and [Cu(bq)(xantphos)]+ (Cu-bq; bq = 2,2'-biquinoline), bearing aromatic diimine ligands. Cu-dab exhibited a two-step ligand-centered redox behavior, where the first wave corresponded to an electrochemically reversible one-electron reduction process. Although Cu(I)-aromatic diimine complexes Cu-dmp, Cu-dmbpy, and Cu-bq exhibited obvious luminescence from the metal-to-ligand charge transfer (MLCT) excited state, Cu-dab did not show any luminescence. Computational studies indicated that this non-luminescent property was caused by the large structural relaxation of Cu-dab during photoexcitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.