Abstract

Two inverse 2-pyridyl-1,2,3-triazole "click" ligands, 2-(4-phenyl-1H-1,2,3-triazol-1-yl)pyridine and 2-(4-benzyl-1H-1,2,3-triazol-1-yl)pyridine, and their palladium(II), platinum(II), rhenium(I), and ruthenium(II) complexes have been synthesized in good to excellent yields. The properties of these inverse "click" complexes have been compared to the isomeric regular compounds using a variety of techniques. X-ray crystallographic analysis shows that the regular and inverse complexes are structurally very similar. However, the chemical and physical properties of the isomers are quite different. Ligand exchange studies and density functional theory (DFT) calculations indicate that metal complexes of the regular 2-(1-R-1H-1,2,3-triazol-4-yl)pyridine (R = phenyl, benzyl) ligands are more stable than those formed with the inverse 2-(4-R-1H-1,2,3-triazol-1-yl)pyridine (R = phenyl, benzyl) "click" chelators. Additionally, the bis-2,2'-bipyridine (bpy) ruthenium(II) complexes of the "click" chelators have been shown to have short excited state lifetimes, which in the inverse triazole case, resulted in ejection of the 2-pyridyl-1,2,3-triazole ligand from the complex. Under identical conditions, the isomeric regular 2-pyridyl-1,2,3-triazole ruthenium(II) bpy complexes are photochemically inert. The absorption spectra of the inverse rhenium(I) and platinum(II) complexes are red-shifted compared to the regular compounds. It is shown that conjugation between the substituent group R and triazolyl unit has a negligible effect on the photophysical properties of the complexes. The inverse rhenium(I) complexes have large Stokes shifts, long metal-to-ligand charge transfer (MLCT) excited state lifetimes, and respectable quantum yields which are relatively solvent insensitive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.