Abstract
Aromatic ring fusion to porphyrins and their derivatives represents an attractive route to tune the molecular conjugation and thus expand their functionalities. Here, we report the expansion of the aromatic π-system of palladium tetraphenyltetrabenzoporphyrins (Pd-TPTBP) via surface-assisted γ-ortho cyclodehydrogenation on Ag(111). The chemical transformation of Pd-TPTBP into different products at an elevated temperature of 600 K was revealed at the single-molecule level using bond-resolved scanning tunneling microscopy with a CO-functionalized tip. We captured a series of γ-ortho cyclodehydrogenation products, wherein the maximum extent to which the reaction can progress is associated with 7-fold C-C formation to afford nearly planar γ-ortho fused porphyrins with 66 conjugated π-electrons. In addition, a small number of molecules undergo C-C bond dissociation of meso-phenyl at elevated temperature, producing fully planar γ-ortho fused products lacking one or two phenyl moieties. Scanning tunneling spectroscopy measurements and DFT calculations suggest the electronic gap of the γ-ortho fused porphyrin decreases compared to that of the precursor. The HOMO and LUMO of the planar γ-ortho fused products are localized on the partially fused benzo moieties and the meso-position, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.