Abstract

Stable radicals are challenging to prepare due to their intrinsic high reactivity. Herein, three trisphenolamine radicals were readily synthesized and exhibited unexpected thermal/electrochemical stability and semiconductor property. These three nitroxide radicals could be considered as a class of aromatized nitro groups or HNO3 derivatives. The closed-shell nitro-like and open-shell nitroxide resonance structure contribute to their outstanding stability. Furthermore, the tunable ground states, extremely low band gap and p-type charge transport properties were systematically investigated. More importantly, the work presents the concept of aromatic inorganic acid radical (AIAR) and aggregation-induced radical (AIR) mechanism to understand the intrinsic structure-property relationship of these radicals. In addition, we provide a novel strategy for the design of stable and low bandgap radicals for organic electronics, magnetics, spintronics, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call