Abstract

The aim of this study was to determine the biological activity of 4 steroidal derivatives (9a, 9b and 10a, 10b) prepared from the commercially available 17α acetoxyprogesterone, where 9a, 9b, have the Δ4-3-oxo structure and 10a and 10b an epoxy group at C-4 and C-5.These steroids were tested as inhibitors of 5α-reductase enzyme, which is present in androgen-dependent tissues and converts testosterone to its more active reduced metabolite dihydrotestosterone.The pharmacological effect of these steroids was demonstrated by the significant decrease of the weight of the prostate gland of gonadectomized hamsters treated with testosterone plus finasteride or with steroids 10a and 10b. For the studies in vitro the IC50 values were determined by measuring the steroid concentration that inhibits 50% of the activity of-5α-reductase. In this study we also determined the capacity of these steroids to bind to the androgen receptor present in the rat prostate cytosol.The results from this work indicated that compounds 9a, 9b, 10a, and 10b inhibited the 5α reductase activity with IC50 values of 360, 370, 13 and 4.9 nM respectively. However these steroids did not bind to the androgen receptors since none competed with labeled mibolerone. Steroid 10b, an epoxy steroidal derivative containing bromine atom in the ester moiety, was the most active inhibitor of 5α-reductase enzyme, present in human prostate homogenates with an IC50 value of 4.9 nM and also showed in vivo pharmacological activity since it decreased the weight of the prostate from hamsters treated with testosterone in a similar way as finasteride.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.