Abstract

Proper development of the nervous system requires a temporally and spatially orchestrated set of events including differentiation, synapse formation and neurotransmission. Nerve growth factor (NGF) acting through the TrkA neurotrophin receptor (also known as NTRK1) regulates many of these events. However, the molecular mechanisms responsible for NGF-regulated secretion are not completely understood. Here, we describe a new signaling pathway involving TrkA, ARMS (also known as Kidins220), synembryn-B and Rac1 in NGF-mediated secretion in PC12 cells. Whereas overexpression of ARMS blocked NGF-mediated secretion, without affecting basal secretion, a decrease in ARMS resulted in potentiation. Similar effects were observed with synembryn-B, a protein that interacts directly with ARMS. Downstream of ARMS and synembryn-B are Gαq and Trio proteins, which modulate the activity of Rac1 in response to NGF. Expression of dominant-negative Rac1 rescued the secretion defects of cells overexpressing ARMS or synembryn-B. Thus, this neurotrophin pathway represents a new mechanism responsible for NGF-regulated secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.