Abstract

Tomosyn is a 130-kDa cytosolic R-SNARE protein that associates with Q-SNAREs and reduces exocytotic activity. Two paralogous genes, tomosyn-1 and -2, occur in mammals and produce seven different isoforms via alternative splicing. Here, we map the structural differences between the yeast homologue of m-tomosyn-1, Sro7, and tomosyn genes/isoforms to identify domains critical to the regulation of exocytotic activity to tomosyn that are outside the soluble N-ethylmaleimide-sensitive attachment receptor motif. Homology modeling of m-tomosyn-1 based on the known structure of yeast Sro7 revealed a highly conserved functional conformation but with tomosyn containing three additional loop domains that emanate from a β-propeller core. Notably, deletion of loops 1 and 3 eliminates tomosyn inhibitory activity on secretion without altering its soluble N-ethylmaleimide-sensitive attachment receptor pairing with syntaxin1A. By comparison, deletion of loop 2, which contains the hypervariable splice region, did not reduce the ability of tomosyn to inhibit regulated secretion. However, exon variation within the hypervariable splice region resulted in significant differences in protein accumulation of tomosyn-2 isoforms. Functional analysis of s-tomosyn-1, m-tomosyn-1, m-tomosyn-2, and xb-tomosyn-2 demonstrated that they exert similar inhibitory effects on elevated K(+)-induced secretion in PC12 cells, although m-tomosyn-2 was novel in strongly augmenting basal secretion. Finally, we report that m-tomosyn-1 is a target substrate for SUMO 2/3 conjugation and that mutation of this small ubiquitin-related modifier target site (Lys-730) enhances m-tomosyn-1 inhibition of secretion without altering interaction with syntaxin1A. Together these results suggest that multiple domains outside the R-SNARE of tomosyn are critical to the efficacy of inhibition by tomosyn on exocytotic secretion.

Highlights

  • Synaptic vesicle fusion and the subsequent release of neurotransmitter require the formation of heterotrimeric SNARE2 complexes formed from plasma membrane pro

  • We report that m-tomosyn-1 is a target substrate for SUMO 2/3 conjugation and that mutation of this small ubiquitin-related modifier target site (Lys-730) enhances m-tomosyn-1 inhibition of secretion without altering interaction with syntaxin1A. Together these results suggest that multiple domains outside the R-SNARE of tomosyn are critical to the efficacy of inhibition by tomosyn on exocytotic secretion

  • Identified in neurons [7,8], tomosyn, a soluble R-SNARE protein, was considered to be a negative effector of fusogenic SNARE complex assembly through interactions with syntaxin1A and SNAP-25 that preclude the binding of VAMP2, thereby resulting in “dead-end” nonfusogenic SNARE complexes [7,8,9,10]

Read more

Summary

Introduction

Synaptic vesicle fusion and the subsequent release of neurotransmitter require the formation of heterotrimeric SNARE2 complexes formed from plasma membrane pro-. Effect of Tomosyn Loop Regions on Inhibition of Secretion in PC12 Cells—To test for functional effects of each loop region, deletion mutants of rat m-tomosyn-1 were constructed and transfected individually into PC12 cells along with a reporter of the regulated secretory pathway, hGH [45].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call