Abstract
We introduce the notion of an arithmetic matroid whose main example is a list of elements of a finitely generated abelian group. In particular, we study the representability of its dual, providing an extension of the Gale duality to this setting. Guided by the geometry of generalized toric arrangements, we provide a combinatorial interpretation of the associated arithmetic Tutte polynomial, which can be seen as a generalization of Crapo’s formula for the classical Tutte polynomial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.