Abstract
We introduce the notion of arithmetic matroid, whose main example is provided by a list of elements in a finitely generated abelian group. We study the representability of its dual, and, guided by the geometry of toric arrangements, we give a combinatorial interpretation of the associated arithmetic Tutte polynomial, which can be seen as a generalization of Crapo's formula. Nous introduisons la notion de matroï de arithmètique, dont le principal exemple est donnè par une liste d'élèments dans un groupe abèlien fini. Nous ètudions la reprèsentabilitè de son dual, et, guidè par la gèomètrie des arrangements toriques, nous donnons une interprètation combinatoire du polynôme de Tutte arithmètique associèe, ce qui peut être vu comme une gènèralisation de la formule de Crapo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Discrete Mathematics & Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.