Abstract
We achieve control of deterministic chaos in an ecosystem model, involving three first-order nonlinear differential equations with a control parameter, recently proposed by Hastings and Powell (HP) in order to describe the dynamical behavior of a three-species food chain. After identifying a chaotic attractor corresponding to a particular value of the parameter of this ecological model, we locate periodic saddle orbits embedded in it. By applying the Ott–Grebogi–Yorke (OGY) method of controlling chaos, which introduces small time-dependent perturbations on the system parameter, we stabilize two of the saddle orbits. Furthermore, we check the versatility of the OGY method, as the system behavior is allowed to switch between ‘no control’ and ‘control’ about one or other of different stabilized periodic orbits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.