Abstract
The global uptake of mobile communication emphasizes the question about possible adverse consequences of the exposure to low-level radiofrequency radiation from mobile phones on human health as result of so-called "non-thermal effects". In order to state safety guidelines it seems appropriate to start by excluding, if possible, non-specific effects on structural and dynamic properties of fundamental biomolecules such as proteins. Proteins are flexible polyelectrolytes; thus, they are susceptible, in principle, to the action of electromagnetic fields. In this article, we investigated the effects of microwaves on structural and functional properties of Tunnus tynnus myoglobin at 1.95 GHz, a frequency used by new wireless microwave communication systems. The protein solution was exposed for 2.5 h to 51 mW/g SAR (specific absorption rate) level. Measurements of absorption spectroscopy, circular dichroism and fluorescence emission decay in the frequency domain do not exhibit any influence of the radiation on the native structural state of protein macromolecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.