Abstract

When the multivariate normality assumption is violated in structural equation modeling, a leading remedy involves estimation via normal theory maximum likelihood with robust corrections to standard errors. We propose that this approach might not be best for forming confidence intervals for quantities with sampling distributions that are slow to approach normality, or for functions of model parameters. We implement and study a robust analog to likelihood-based confidence intervals based on inverting the robust chi-square difference test of Satorra (2000). We compare robust standard errors and the robust likelihood-based approach versus resampling methods in confirmatory factor analysis (Studies 1 & 2) and mediation analysis models (Study 3) for both single parameters and functions of model parameters, and under a variety of nonnormal data generation conditions. The percentile bootstrap emerged as the method with the best calibrated coverage rates and should be preferred if resampling is possible, followed by the robust likelihood-based approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.