Abstract
Data collected from questionnaires are often in ordinal scale. Unweighted least squares (ULS), diagonally weighted least squares (DWLS) and normal-theory maximum likelihood (ML) are commonly used methods to fit structural equation models. Consistency of these estimators demands no structural misspecification. In this article, we conduct a simulation study to compare the equation-by-equation polychoric instrumental variable (PIV) estimation with ULS, DWLS, and ML. Accuracy of PIV for the correctly specified model and robustness of PIV for misspecified models are investigated through a confirmatory factor analysis (CFA) model and a structural equation model with ordinal indicators. The effects of sample size and nonnormality of the underlying continuous variables are also examined. The simulation results show that PIV produces robust factor loading estimates in the CFA model and in structural equation models. PIV also produces robust path coefficient estimates in the model where valid instruments are used. However, robustness highly depends on the validity of instruments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Structural Equation Modeling: A Multidisciplinary Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.