Abstract

Besides its principal maximum, the spatial frequency characteristic curve of the complex visual cortical receptive field of curarized cats also has additional maxima and also negative regions, as predicted by the theory of piecewise Fourier analysis. Comparison of responses of the complex receptive field to sinusoidal gratings completely and incompletely contained in the field and comparison of responses to sinusoidal and square-wave gratings indicate that the receptive field, as a spatial frequency filter, has linear properties. The response of the complex receptive field rises with an increase in the number of periods of the sinusoidal grating. Several periods of optimal frequency match the complex field. Receptive fields tuned to a broad band of spatial frequencies were found in neuron columns. The results confirm the view that complex receptive fields are spatial frequency filters and not detectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call