Abstract

North America is recognized for the exceptional richness of rabies virus (RV) wildlife reservoir species. Management of RV is accomplished through vaccination targeting mesocarnivore reservoir populations, such as the raccoon (Procyon lotor) in Eastern North America. Raccoons are a common generalist species, and populations may reach high densities in developed areas, which can result in contact with humans and pets with potential exposures to the raccoon variant of RV throughout the eastern United States. Understanding the spatial movement of RV by raccoon populations is important for monitoring and refining strategies supporting the landscape-level control and local elimination of this lethal zoonosis. We developed a high-throughput genotyping panel for raccoons based on hundreds of microhaplotypes to identify population structure and genetic diversity relevant to rabies management programs. Throughout the eastern United States, we identified hierarchical population genetic structure with clusters that were connected through isolation-by-distance. We also illustrate that this genotyping approach can be used to support real-time management priorities by identifying the geographic origin of a rabid raccoon that was collected in an area of the United States that had been raccoon RV-free for 8 years. The results from this study and the utility of the microhaplotype panel and genotyping method will provide managers with information on raccoon ecology that can be incorporated into future management decisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call