Abstract

Observational studies have suggested bidirectional associations between psychiatric disorders and COVID-19 phenotypes, but results of such studies are inconsistent. Mendelian Randomization (MR) may overcome the limitations of observational studies, e.g., unmeasured confounding and uncertainties about cause and effect. We aimed to elucidate associations between neuropsychiatric disorders and COVID-19 susceptibility and severity. To that end, we applied a two-sample, bidirectional, univariable, and multivariable MR design to genetic data from genome-wide association studies (GWASs) of neuropsychiatric disorders and COVID-19 phenotypes (released in January 2021). In single-variable Generalized Summary MR analysis, the most significant and only Bonferroni-corrected significant result was found for genetic liability to BIP-SCZ (a combined GWAS of bipolar disorder and schizophrenia as cases vs. controls) increasing risk of COVID-19 (OR = 1.17, 95% CI, 1.06–1.28). However, we found a significant, positive genetic correlation between BIP-SCZ and COVID-19 of 0.295 and could not confirm causal or horizontally pleiotropic effects using another method. No genetic liabilities to COVID-19 phenotypes increased the risk of (neuro)psychiatric disorders. In multivariable MR using both neuropsychiatric and a range of other phenotypes, only genetic instruments of BMI remained causally associated with COVID-19. All sensitivity analyses confirmed the results. In conclusion, while genetic liability to bipolar disorder and schizophrenia combined slightly increased COVID-19 susceptibility in one univariable analysis, other MR and multivariable analyses could only confirm genetic underpinnings of BMI to be causally implicated in COVID-19 susceptibility. Thus, using MR we found no consistent proof of genetic liabilities to (neuro)psychiatric disorders contributing to COVID-19 liability or vice versa, which is in line with at least two observational studies. Previously reported positive associations between psychiatric disorders and COVID-19 by others may have resulted from statistical models incompletely capturing BMI as a continuous covariate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.