Abstract
Abstract. The idea of two separate storm time ring currents, a symmetric and an asymmetric one has accepted since the 1960s. The existence of a symmetric equatorial ring current was concluded from Dst. However, the asymmetric development of the low-latitude geomagnetic disturbance field during storms lead to the assumption of the real existence of an asymmetric ring current. I think it is time to inquire whether this conception is correct. Thus, I have investigated the development of the low-latitude geomagnetic field during all the magnetic local times under disturbed and quiet conditions. The storm on February 6–9, 1986 and a statistical analysis of many storms has shown that the asymmetry does not vanish during the storm recovery phase. The ratio between the recovery phase asymmetry and the main phase asymmetry is low only for powerful storms. Storms of moderate intensity show the opposite. The global picture of the field evolution of the February storm shows clear differences at different local times. For instance the main phase and recovery phase start time does not coincide with Dst. Also the ring current decay is not the same at different local times. Therefore, Dst gives an incorrect picture of the field development. Moreover, asymmetry does not disappear during international quiet days as the investigation of the low-latitude geomagnetic field shows. Considering all these observations, I think we must revise our ideas about the ring current. In my opinion only one ring current exists and this is an asymmetric one. This asymmetry increases during storms and develops rather fast to more or less symmetric conditions. However, in no case is it justified to conclude from Dst that a symmetric ring current exists.Key words. Magnetospheric physics (current systems; magnetospheric configuration and dynamics; storms and substorms)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.