Abstract
The uptake potential of fragrance encapsulates by aquatic or terrestrial organisms was investigated. Because of their size of <5 mm and their polymeric nature, fragrance encapsulates fall under the Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection definition of microplastics. After use, fragrance encapsulates enter the sewer system and reach the sewage treatment plant (STP), where >90% of them are likely to be removed by sorption to the sludge. When the STP-generated sludge is used as fertilizer for agricultural soils, this may lead to potential exposure of terrestrial invertebrates to fragrance encapsulates, especially those feeding on particles of a similar size as the fragrance encapsulates. Two aquatic (Corbicula fluminea [water exposure] and Hyalella azteca [water and dietary exposure]) and one terrestrial invertebrate (Eisenia andrei [soil exposure]) species were exposed to 50 mg/L (or mg/kg) double fluorescence-labeled fragrance encapsulates (diameter 5-50 µm). The results showed that fragrance encapsulates are available to aquatic and terrestrial invertebrates but that species-specific differences regarding the ability to ingest fragrance encapsulates may exist. The benthic grazer H. azteca showed no ingestion of fragrance encapsulates, whereas the capsules were readily ingested and egested by the unselective freshwater filter feeder C. fluminea as well as the terrestrial decomposer E. andrei. No signs of bioaccumulation of fragrance encapsulates were indicated by microscopic assessment. Environ Toxicol Chem 2022;41:931-943. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.