Abstract

Preferential attachment is an appealing edge generating mechanism for modeling social networks. It provides both an intuitive description of network growth and an explanation for the observed power laws in degree distributions. However, there are often limitations in fitting parametric network models to data due to the complex nature of real-world networks. In this paper, we consider a semi-parametric estimation approach by looking at only the nodes with large in- or out-degrees of the network. This method examines the tail behavior of both the marginal and joint degree distributions and is based on extreme value theory. We compare it with the existing parametric approaches and demonstrate how it can provide more robust estimates of parameters associated with the network when the data are corrupted or when the model is misspecified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.