Abstract

Abstract We describe and compare the morphology and activity of two types of gullies with different orientations collocated on the Kaiser dune field in the southern hemisphere of Mars: large apron gullies and linear dune gullies. The activity of large apron gullies follows an annual cycle: (i) material collapse into the alcove (mid-autumn/late winter) as CO 2 condenses; (ii) remobilization by mass flows (late winter); and (iii) continuous appearance of hundreds of ‘digitate flows’ on the fan (autumn/winter). We find that large apron gullies could form in hundreds of Martian years. In contrast, linear dune gullies are active briefly in late winter, when the CO 2 frost disappears. Their activity is characterized by the extension of channels, the creation of pits and the darkening of the surface. Linear dune gullies are likely to form within one to tens of Martian years. We infer that insolation, which influences the depth to ground ice and the amount of volatile deposited, may be the factor differentiating large apron gullies and linear dune gullies. Sediment transport by CO 2 sublimation is a good candidate for the activity observed in all of these features. However, linear gullies could also be formed by brine release when the temperature rises abruptly after the removal of the CO 2 ice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.