Abstract
[1] Martian gully landforms, indicative of rapid flow of sediment down steep slopes, have been cited as evidence of the action of near-surface liquid water in Mars' recent past. Gullies in polar regions cannot involve pure liquid water because ambient temperatures are too low. Here, we show that polar gullies could be initiated by fluidization of sediment over a subliming seasonal deposit of CO2 frost, as has been proposed previously. For gullies in sand, the gas speed and CO2 sublimation rate required for fluidization is calculated with the semi-empirical Ergun relation (as validated in industrial applications). For gullies in dust, the gas speed and sublimation rate required for fluidization are estimated from laboratory experiments with comparable materials. To determine if those rates can be achieved, we compute diurnal and seasonal surface (and subsurface) temperatures through a Martian year (including CO2 condensation and sublimation) using the MARSTHERM one-dimensional finite difference thermal model. Models were run without sediment, and with layers of sand or dust 10−4–10−1 m thick deposited over a seasonal layer of CO2 frost. The simulations show that, in the spring, sufficient heat reaches the CO2 frost, underlying the surface sediment layer, to fluidize them. This result confirms that Martian gullies may have diverse origins – and that polar and mid-latitude gullies can be initiated on steep slopes by the fluidization of loose sediment on a sublimating seasonal deposit of CO2 gas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.