Abstract

Genetic relations among the contents of Rubisco, soluble protein and total leaf nitrogen (N) in leaves of rice (Oryza sativa L.) were studied by quantitative trait loci (QTL) analysis with a population of backcross inbred lines (BILs) of japonica Nipponbarexindica Kasalath. The ratio of Rubisco to total leaf N in leaves is the main target in improving photosynthetic N-use efficiency in plants. QTLs controlling Rubisco content were not detected near QTLs for total leaf N content. These results indicate that contents of Rubisco and total leaf N are controlled by different genetics. QTLs that controlled the ratio of Rubisco to total leaf N (CORNs) were detected. These results suggest that some mechanism(s) may be involved in determining this ratio, while the contents of Rubisco and total leaf N are controlled in other ways. In elite BILs, the ratios of Rubisco to total leaf N were higher than those of both parents. These results suggest a good possibility of improving N-use efficiency by CORNs in cultivated rice. A QTL controlling Rubisco content was mapped near a QTL for soluble protein content on chromosome 8 at 5 d after heading and on chromosome 9 at 25 d. In each chromosome region, the peaks of both QTLs overlapped accurately, giving a high possibility of pleiotropic effects by the same genes. Different QTLs controlling soluble protein or Rubisco were detected from those detected at 5 d or 25 d after heading. This suggests that these traits are genetically controlled depending on the growth stages of leaves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call