Abstract

Human epidermal growth factor receptor 2 (HER2) is well-known as the therapeutic marker in breast cancer. Therefore, we evaluated anti-cancer activity of arctigenin (ATG) on in SK-BR-3 HER2-overexpressing human breast cancer cells. Cell viability and cytotoxicity were analyzed with MTT and colony-forming assay and cell cycle analysis was performed by flow cytometry. The expression and/or phosphorylation of proteins in whole cell lysate and mitochondrial fraction were analyzed by Western blotting. Cellular levels of LC3 and sequestosome 1 (SQSTM1/P62) were observed by immunofluorescence analysis. The result showed that ATG decreased cell viability of SK-BR-3 cells in a concentration-dependent manner. Moreover, ATG increased the sub G1 population linked to the suppression of HER2/EGFR1 signaling pathway. Furthermore, ATG increased the phosphorylation of H2AX and down-regulated RAD51 and survivin expressions, indicating that ATG induced DNA damage and inhibited the DNA repair system. We also found that cleavages of caspase-7 and PARP by releasing mitochondrial cytochrome c into the cytoplasm were induced by ATG treatment for 72h through the reduction of Bcl-2 and Bcl-xL levels in mitochondria. In contrast, the levels of LC-3 and SQSTM1/P62 were increased by ATG for 24h through the Akt/mTOR and AMPK signaling pathway. Taken together, this study indicates that autophagy-linked apoptosis is responsible for the anti-cancer activity of ATG in SK-BR-3 cells, and suggests that ATG is considered a potential therapeutic for the treatment of HER2-overexpressing breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call