Abstract
AbstractUsing a large initial condition ensemble of climate model simulations, we examine the impact of volcanic activity on Arctic sea ice cover from 1960 to 2005, a period that includes three very large tropical eruptions. Ensemble averaging across simulations with natural (volcanic and solar) forcings alone reduces noise due to internal variability to show a decade of increased Arctic sea extent (of up to half a million square kilometers) following each of the Mount Agung (1963), Mount El Chichón (1982), and Mount Pinatubo (1991) eruptions. A similar impact is seen when averaging over a large ensemble of simulations with natural and all‐known anthropogenic forcings. We show that the volcanic response in sea ice cover is sensitive to preeruption temperature, with warmer conditions before an eruption being associated with a larger than average response. Finally, a detection and attribution analysis using second‐generation Canadian Earth System Model (CanESM2) did not identify a significant response in the observations, while finding no evidence of inconsistency between observations and CanESM2 since regression coefficients were consistent with unity. A similar detection and attribution analysis using the somewhat stronger volcanic response from the simulations in the average of the CMIP5 models did identify a detectable natural forcing response in four observational sea ice extent data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.