Abstract

This study assesses Arctic cyclone characteristics and associated precipitation and surface wind speeds using an ensemble of regional climate model (GEMCLIM) simulations at 0.5° resolution for the 1981–2099 period following the RCP8.5 scenario. Comparison of GEMCLIM simulation with observations for current climate (1981–2010) suggests that GEMCLIM realistically reproduces the spatial and seasonal variation of Arctic cyclone frequency and intensity, and associated precipitation, for winter and summer. Clear added-value is found for several regions, compared to the driving data. The pressure-wind speed relationships for each region are reasonably reproduced and more extreme winds associated with increasing cyclone intensity are realistically simulated. In addition, the spatial and temporal variations of observed extreme cyclones are well captured. In future climate (2070–2099), the winter cyclone intensity and frequency, and associated precipitation, are projected to increase and decrease over the Aleutian and Icelandic Low regions, respectively. For summer, the projected changes are relatively smaller than those for winter and vary with region. Interestingly, significant decreases in cyclone contribution to total precipitation are found for northern Canada and Eurasia regions, despite increases in cyclone-related precipitation amount. This suggests stronger influence of mesoscale systems on precipitation compared to synoptic-scale systems. Enhanced pressure-wind speed relationships are projected for Arctic Canada and the Chukchi and East Siberian Seas. The increase of extreme cyclones during autumn is primarily related to sea ice loss during summer, while for winter, large-scale circulation changes (i.e. Arctic dipole) are mostly responsible due to strong sea ice loss in the central Arctic during autumn. This study demonstrates the added-value of dynamic downscaling with respect to Arctic cyclone characteristics and associated surface variables and provides useful insights regarding their future projections for use in risk assessment studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.