Abstract
Target tracking using multiple sensors can provide better performance than using a single sensor. One approach to multiple target tracking with multiple sensors is to first perform single sensor tracking and then fuse the tracks from the different sensors. Two processing architectures for track fusion are presented: sensor to sensor track fusion, and sensor to system track fusion. Technical issues related to the statistical correlation between track estimation errors are discussed. Approaches for associating the tracks and combining the track state estimates of associated tracks that account for this correlation are described and compared by both theoretical analysis and Monte Carlo simulations.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have