Abstract

This paper addresses the architecture optimization of a three-degree-of-freedom translational parallel mechanism designed for machining applications. The design optimization is conducted on the basis of a prescribed Cartesian workspace with prescribed kinetostatic performances. The resulting machine, the Orthoglide, features three fixed parallel linear joints which are mounted orthogonally, and a mobile platform which moves in the Cartesian x-y-z space with fixed orientation. The interesting features of the Orthoglide are a regular Cartesian workspace shape, uniform performances in all directions, and good compactness. A small-scale prototype of the Orthoglide under development is presented at the end of this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.