Abstract
This paper presents a system-level approach to interference management in an infrastructure-based wireless network with full frequency reuse. The key idea is to use loose base-station coordination that is tailored to the spatial load distribution and the propagation environment to exploit the diversity in a user population's sensitivity to interference. System architecture and abstractions to enable such coordination are developed for both the downlink and the uplink cases, which present differing interference characteristics. The basis for the approach is clustering and aggregation of traffic loads into classes of users with similar interference sensitivities that enable coarse-grained information exchange among base stations with greatly reduced communication overheads. This paper explores ways to model and optimize the system under dynamic traffic loads where users come and go, resulting in interference-induced performance coupling across base stations. Based on extensive system-level simulations, we demonstrate load-dependent reductions in file transfer delay ranging from 20%-80% as compared to a simple baseline not unlike systems used in the field today while simultaneously providing more uniform coverage. Average savings in user power consumption of up to 75% is achieved. Performance results under heterogeneous spatial loads illustrate the importance of being traffic- and environment-aware.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have