Abstract
Estimation of distribution algorithms (EDAs) are a class of evolutionary optimisation algorithms based on probability distribution model. This article extends the basic EDAs for tackling multi-objective optimisation problems by incorporating Archimedean copulas for constructing probability distribution model, and using the concept of Pareto dominance. In the algorithm, the marginal distributions from the current population are firstly estimated by kernel estimation method and are used to estimate the parameter of the Archimedean copula function generator by using the maximum likelihood method. Afterwards, the multivariate Archimedean copula sample algorithm is used to generate current offsprings population by sampling the n-dimensional Laplace transform Archimedean copula. The population with the current population and current offsprings population is sorted based on non-domination, and the best individuals are selected to form the next population based on rank and the crowding distance. The proposed algorithm is tested to compare with NSGA-II, PAES and SPEA2 using a set of benchmark functions. Both convergence and diversity metrics are used to evaluate the performance of the algorithm. The experimental results show that the algorithm outperforms NSGA-II, PAES and SPEA2 in two metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Trust Management in Computing and Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.