Abstract
An extensive database, including Th–;U–Nb–REE systematics, for diverse magmatic and sedimentary lithologies of 2.7 Ga Wawa greenstone belts provide new constraints on the mechanism of crustal growth in the southern Superior Province, and controls on its composition. The greenstone belts are characterized by collages of oceanic plateaus, oceanic island arcs, and trench turbidites; these lithotectonic fragments were tectonically assembled in a large subduction–accretion complex. Following juxtaposition, these diverse lithologies were collectively intruded by syn-kinematic TTG (tonalite–trondhjemite–granodiorite) plutons and ultramafic to felsic dykes and sills, with subduction zone geochemical signatures. Intra-oceanic basalts are characterized by near-flat REE patterns, and Nb/U and Nb/Th ratios generally greater than primitive mantle values, consistent with positive ϵNd values. They are associated with komatiites, the association being interpreted as an ocean plateau sequence erupted from a mantle plume. Bimodal arc volcanic sequences, trench turbidites, and contemporaneous TTG suites are characterized by fractionated REE, with Nb/U and Nb/Th ratios less than primitive mantle values. Mixing hyperbolae between oceanic plateau and magmatic arc sequences pass through the estimated composition of bulk continental crust, suggesting that crustal growth in the late Archean was by tectonic, sedimentary, and chemical mixing of oceanic plateau and arc sequences at convergent plate boundaries. Mixing calculations suggest that oceanic plateau and subduction zone components in the Wawa continental crust are represented by 6–12% and 88–94%, respectively. High Nb/U and Nb/Th ratios of plateau tholeiitic basalts are interpreted as a complementary reservoir to arc magmatism (low Nb/U and Nb/Th), hundreds of millions of years prior to recycling of oceanic lithosphere through a subduction zone (high Nb/U, Nb/Th), and its incorporation into a mantle plume from which 2.7 Ga plateau tholeiites erupted. The variably high Nb/U ratios of the plateau basalts are consistent with early extraction of large quantities of the protoliths (magmatic precursor) of continental crust from the southern Superior Province asthenospheric mantle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have