Abstract

Arc ion plating (AIP) is applied to coat sandwich-like Cr/CrN/Cr multilayers on stainless steel 316L (SS316L) as bipolar plates for polymer electrolyte membrane fuel cell (PEMFC). Phase structure, hardness, adhesion property, interfacial contact resistance (ICR) between bipolar plates and carbon papers, and electrochemical corrosion property in the simulated PEMFC conditions are investigated. Cr phase with crystal plane of (110), (211), (322), and CrN phase with (321) are observed in the multilayer. The coating is found smooth, continuous and dense in cross-sectional observation by SEM, and the sandwiched structure of the coating is also confirmed by EDX results. Scratch tests show that the multilayer exhibits strong adhesion strength with steel substrate, which is beneficial to prevent layers from peeling off mechanically. After the coating treatment, the performance of the bipolar plate is greatly improved. Knoop hardness of the bipolar plates increases from 324HK to 692HK. The ICR decreases by one order of magnitude; furthermore, the corrosion resistance was also enhanced. Our analysis indicates that the improvement is attributed to high adhesion force of the smooth and dense coating and the synergistic function of Cr/CrN/Cr multilayer structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call