Abstract
AbstractThe dicycle transversal number of a digraph D is the minimum size of a dicycle transversal of D, that is a set of vertices of D, whose removal from D makes it acyclic.An arc a of a digraph D with at least one cycle is a transversal arc if a is in every directed cycle of D (making acyclic). In [3] and [4], we completely characterized the complexity of following problem: Given a digraph D, decide if there is a dicycle B in D and a cycle C in its underlying undirected graph such that . It turns out that the problem is polynomially solvable for digraphs with a constantly bounded number of transversal vertices (including cases where ). In the remaining case (allowing arbitrarily many transversal vertices) the problem is NP‐complete. In this article, we classify the complexity of the arc‐analog of this problem, where we ask for a dicycle B and a cycle C that are arc‐disjoint, but not necessarily vertex‐disjoint. We prove that the problem is polynomially solvable for strong digraphs and for digraphs with a constantly bounded number of transversal arcs (but possibly an unbounded number of transversal vertices). In the remaining case (allowing arbitrarily many transversal arcs) the problem is NP‐complete.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have