Abstract

Drylands are highly susceptible to degradation and climate change, which has important ecological and socio-economic consequences worldwide. To halt drylands degradation, plant species selection for restoration is starting to include also a functional approach, but does not integrate belowground functional traits yet. Therefore we tested the use of mycorrhizal traits to identify native plant species which host guilds of beneficial microbes and therefore enhance multiple soil functions simultaneously – soil multifunctionality. We used a soil organic matter (SOM) gradient (0.9–1.9%) and evaluated the effect of 14 common and abundant native herbaceous plant species (+bare soil) on soil functionality. We measured several soil functions (soil microbial biomass, metabolic quotient, and enzymatic activities – dehydrogenase, β-glucosidase and phosphatase) and built a soil multifunctionality index. Soil multifunctionality was strongly associated with mycorrhizal traits across the analysed SOM gradient. Bare soils and soils under non- or low-mycorrhizal plant species displayed the lower soil functionality (both individual functions and multifunctionality), while soils under Fabaceae species (Medicago truncatula, Astragalus corrugatus and Lotus halophilus) displayed the highest. For each plant species, the highest soil multifunctionality was observed at the SOM-richer site. Soil multifunctionality was strongly associated with all the mycorrhizal traits but mycorrhizal intensity and AMF spores abundance were more correlated with soil multifunctionality than mycorrhizal frequency. Our data show that: i) AM traits can be good indicators of simultaneous multiple soil functions in drylands; and ii) soil multifunctionality in drylands can be improved by management practices promoting SOM accumulation and favouring specific native plant species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.