Abstract

Using the set theoretical principle ∇ for arbitrary large cardinals κ, arbitrary large strongly κ-free abelian groupsA are constructed such that Hom(A, G)={0} for all cotorsion-free groupsG with |G|<κ. This result will be applied to the theory of arbitrary torsion classes for Mod-Z. It allows one, in particular, to prove that the classF of cotorsion-free abelian groups is not cogenerated by aset of abelian groups. This answers a conjecture of Gobel and Wald positively. Furthermore, arbitrary many torsion classes for Mod-Z can be constructed which are not generated or not cogenerated by single abelian groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.