Abstract

This research investigates the influence of water composition, the presence of seasonal algal mats, detrital inputs and the activity of microorganisms on the crystallization of aragonite in the sediments deposited in the hypersaline Laguna Honda wetland (S of Spain). The high alkaline and hypersaline waters (pH > 9.2 and C.E. > 70 mS/cm) of the wetland lake are rich in SO42− (>24,000 mg/l), Cl− (>21,000 mg/l), Na+ (>11,000 mg/l) Mg2+ (>8400 mg/l) and Ca2+ (>1000 mg/l), and are supersaturated for dolomite, calcite and aragonite. Sediments have lower pH values than column waters, oscillating from 8.54 in the low Eh (up to −80.9 mV) central deep sediments and 6.33 in the shallower higher Eh (around −13.6 mV) shore sediments. Erosion of the surrounding olive groves soils produced detrital silicates rich sediments with concretions of carbonate or sulfate. Aragonite (up to 19 %) and pyrite (up to 13 %) are mainly concentrated in the organic matter rich samples from the upper part of the sediment cores, whereas gypsum is preferably concentrated in low organic matter content samples. Mineral crusts containing a MgAl silicate phase, epsomite, halite and gypsum are precipitated on the floating algal mats covering the wetland waters. Floating algal mats deposit increased the organic matter content of the upper sediments which promoted the presence of fermentative microorganisms, sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) communities and variations of Eh that influence the authigenesis of carbonate and S-bearing minerals. Replacement of poorly crystalline MgSi phases infilling algal cells by aragonite was favored in the organic matter rich sediments with low Eh values and important SRB communities that promoted sulfate bioreduction processes to form pyrite. Aragonite precipitation was favored by the increase of carbonate and bicarbonate concentration produced by the SRB oxidation of organic matter, the CO2 degassing by high summer temperatures and the CO2 uptake by photosynthesis of the algal mats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.