Abstract

It is thought that the physiological actions of endogenous cannabinoid arachidonylethanolamide (AEA), as well as exogenous cannabinoids such as Δ 9-tetrahydrocannabinol (THC), are mediated by two subtypes of cannabinoid receptors, CB1 and CB2, which have recently been characterized. Injection of AEA leads to alterations in motor behavior and endocrine function. While these phenomena have been well characterized, the neuronal substrate of AEA's actions remains undetermined. In this study, FOS immunoreactivity (FOSir) was used to map rat brain nuclei that are responsive to a single intracerebroventricular injection of AEA. The results showed that FOSir was induced in several nuclei including the bed nucleus of the stria terminalis (BNST), paraventricular nucleus of the hypothalamus (PVN), central nucleus of the amygdala (Ce), periaqueductal gray area (PAG), dentate gyrus in the hippocampus (Dg), paraventricular nucleus of the thalamus (PVA), median preoptic nucleus (MnPO), periventricular nucleus (Pe), caudate putamen (CPU) and the ependymal lining of the ventricles. The pattern of activation identified correlates, in part, with the distribution of CB receptors. At the same time, a new subset of nuclei, without demonstrable CB receptors, have been shown to respond to an AEA challenge. Activation of these nuclei is consistent with the physiological effects of AEA. These findings provide valuable information on the response to AEA at the level of neuronal activation and provide the basis for a broader understanding of the possible role of CB receptors in the modulation of motor and endocrine function associated with the use of exogenous cannabinoids, such as marijuana.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.