Abstract

Arabinogalactan proteins are abundant cell surface proteoglycans in plants and are implicated to act as developmental markers during plant growth. We previously reported that AtGALT31A, AtGALT29A, and AtGLCAT14A-C, which are involved in the biosynthesis of arabinogalactan proteins, localize not only to the Golgi cisternae but also to smaller compartments, which may be a part of the unconventional protein secretory pathway in plants. In Poulsen et al.,1 we have demonstrated increased targeting of AtGALT29A to small compartments when Y144 is substituted with another amino acid, and we implicated a role for Y144 in the subcellular targeting of AtGALT29A. In this paper, we are presenting another aspect of Y144 substitution in AtGALT29A; namely, Y144A construct demonstrated a 2.5-fold increase while Y144E construct demonstrated a 2-fold decrease in the galactosyltransferase activity of AtGALT29A. Therefore, the electrostatic status of Y144, which is regulated by an unknown kinase/phosphatase system, may regulate AtGALT29A enzyme activity. Moreover, we have identified additional proteins, apyrase 3 (APY3; At1g14240) and UDP-glucuronate epimerases 1 and 6 (GAE1, At4g30440; GAE6, At3g23820), from Arabidopsis thaliana that co-localize with AtGALT31A in the small compartments when expressed transiently in Nicotiana benthamiana. These proteins may play roles in nucleotide sugar metabolism in the small compartments together with arabinogalactan glycosyltransferases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.