Abstract

The aim of this report is to provide general information on the molecular structure and synthesis of arabinogalactan proteins (AGPs) in association to their physiological significance. Assessment of genetic modifications of the activity of enzymes involved in the AGP biosynthesis is an efficient tool to study AGP functions. Thus, P4H (prolyl 4 hydroxylase) mutants, GLCAT (β-glucuronosyltransferase) mutants, and GH43 (glycoside hydrolase family 43) mutants have been described. We focused on the overview of AGPs modifications observed at the molecular, cellular, and organ levels. Inhibition of the hydroxylation process results in an increase in the intensity of cell divisions and thus, has an impact on root system length and leaf area. In turn, overexpression of P4H genes stimulates the density of root hairs. A mutation in GLCAT genes responsible for the transfer of glucuronic acid to the AGP molecule revealed that the reduction of GlcA in AGP disrupts the substantial assembly of the primary cell wall. Furthermore, silencing of genes encoding GH43, which has the ability to hydrolyze the AGP glycan by removing incorrectly synthesized β-1,3-galactans, induces changes in the abundance of other cell wall constituents, which finally leads to root growth defects. This information provides insight into AGPs as a crucial players in the structural interactions present in the plant extracellular matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.