Abstract

Si submonolayer-by-submonolayer epitaxy or subatomic-layer epitaxy (SALE) from Si 2H 6 on Si(001) has been carried out by repeating Si 2H 6 exposure and surface excitation induced by the combination of substrate resistive heating and Ar + laser irradiation. As the average substrate temperature or the laser irradiation power increases, the surface morphology of a grown film changes from a convex shape to a concave shape through a trapezoid shape. The roughness of a flat area of the trapezoid film is within ±2A˚per growth thickness of 100A˚, and a substrate temperature window of∼ 15°C and a laser power window of∼ 0.25W, where such a flat growth surface and a constant growth rate are obtained, has been observed. The ranges of these windows have been estimated to correspond to the same variation of the surface temperature in the laser irradiation area during the laser irradiation. This result together with the result of the analyses on growth thickness distribution profiles suggests that the laser irradiation works as a thermal effect. Thus, in the Ar +-laser-assisted SALE method, the growth surface morphology then the growth mode is controlled by the surface temperature during the laser irradiation. An Ar + laser is a useful tool to control the surface temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.