Abstract

Generally, an aquifer system coupled into a groundwater management model was regarded as a linear system. However, in terms of systems analysis, the aquifer system can be proven to be an incremental linear system rather than a linear system. For example, a confined aquifer system can be decomposed into two parts, one of which is a linear time invariability sub-system and another is a zero-input response. This system does not meet the additivity property of linear system, but satisfies the incremental linear system characteristics. In order to better understand, a case study of water resources management of Huaibei city within semiarid region, north Anhui province of China, is cited. Taking into account the water demand for satisfying the urban development in the next 15 years, three planning target years of water resources are preset as the present (2005), the short term (2010) and the long term (2020), respectively, and four hydrological years (e.g., wet year, mean year, dry year, and extremely dry year) are also defined by the rainfall data of many years. A groundwater management model based on linear programming is established. This model can deal with 12 possible scenarios (3 target years × 4 hydrological years), optimize the strategies of water resources development, integrate various kinds of water sources (e.g., groundwater, surface–water and additional water) and meet the water demand for the urban development of Huaibei city. In accordance with the groundwater management model solutions, the problem of groundwater drawdown funnels (groundwater overextraction funnels) which formed within the Huaibei downtown area for many years and led to some environmental and social issues will be solved over the whole planning period. More importantly, through statistically analyzing the model solutions, the relationships between the groundwater pumping (input signals) and groundwater level recovery (output signals) show up the characteristics of the incremental linear system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call