Abstract
The quite new technique of Surface Nuclear Magnetic Resonance (SNMR) has been extensively tested on the test site Nauen near Berlin to yield the geometry, water content and hydraulic conductivity of the aquifer. The test site is composed of an unconfined aquifer consisting of Quaternary sands with glacial till beneath. It is a very favourable site for assessing the suitability and performance of joint geophysical methods for groundwater exploration. Complementary measurements to SNMR were conducted with Ground Penetrating Radar (GPR), 1D-complex resistivity soundings, i.e. Spectral Induced Polarisation (SIP), 2D-geoelectrics and refraction seismics. Laboratory measurements of porosities, grain size distributions and Nuclear Magnetic Resonance (NMR) decay times were carried out on core samples, and hydraulic conductivities were also derived in order to control and interpret the results of field measurements. The SNMR method allowed the detection of the aquifer beyond any doubt and the determination of the approximate aquifer geometry. The aquifer water content found by SNMR fits very well with the independent measurements on core samples. Hydraulic conductivities derived from decay times are well in range with those from laboratory measurements. GPR allowed a very reliable determination of the aquifer geometry. This information, incorporated into inversion of geoelectric data, led to an improved determination of aquifer electrical resistivity. The estimation of water content by GPR and geoelectrics, even under the favourable conditions in Nauen, is by far not as reliable as that by SNMR. Obtaining information about hydraulic conductivity is possible only with SNMR. Thus, in combination with other geophysical methods, SNMR allows a much more detailed and reliable assessment of aquifers than what was possible with other surface geophysical methods before. In fact, it is, by far, the only method that allows direct detection of water and reliable estimations about water content. It is expected that SNMR will turn out to be a valuable and powerful tool in applied geophysics for groundwater exploration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have